大家好,关于视觉控制器的作用很多朋友都还不太明白,不过没关系,因为今天小编就来为大家分享关于深圳买视觉控制器的公司的知识点,相信应该可以解决大家的一些困惑和问题,如果碰巧可以解决您的问题,还望关注下本站哦,希望对各位有所帮助!
本文目录
一、机器人的传感器都有哪些作用
如今的机器人已具有类似人一样的肢体及感官功能,有一定程度的智能,动作程序灵活,在工作时可以不依赖人的操纵。而这一切都少不了传感器的功劳,传感器是机器人感知外界的重要帮手,它们犹如人类的感知器官,机器人的视觉、力觉、触觉、嗅觉、味觉等对外部环境的感知能力都是由传感器提供的,同时,传感器还可用来检测机器人自身的工作状态,以及机器人智能探测外部工作环境和对象状态。并能够按照一定的规律转换成可用输出信号的一种器件,为了让机器人实现尽可能高的灵敏度,在它的身体构造里会装上各式各样的传感器,那么机器人究竟要具备多少种传感器才能尽可能的做到如人类一样灵敏呢?以下是从机器人家上看到的,希望对你有用
根据检测对象的不同可将机器人用传感器分为内部传感器和外部传感器。
内部传感器主要用来检测机器人各内部系统的状况,如各关节的位置、速度、加速度温度、电机速度、电机载荷、电池电压等,并将所测得的信息作为反馈信息送至控制器,形成闭环控制。
而外部传感器是用来获取有关机器人的作业对象及外界环境等方面的信息,是机器人与周围交互工作的信息通道,用来执行视觉、接近觉、触觉、力觉等传感器,比如距离测量、声音、光线等。
具体介绍如下:
1、视觉传感器
机器视觉是使机器人具有感知功能的系统,其通过视觉传感器获取图像进行分析,让机器人能够代替人眼辨识物体,测量和判断,实现定位等功能。业界人士指出,目前在中国使用简便的智能视觉传感器占了机器视觉系统市场60%左右的市场份额。视觉传感器的优点是探测范围广、获取信息丰富,实际应用中常使用多个视觉传感器或者与其它传感器配合使用,通过一定的算法可以得到物体的形状、距离、速度等诸多信息。
以深度摄像头为基础的计算视觉领域已经成为整个高科技行业最热门的投资和创业热点之一。有意思的是,这一领域的许多尖端成果都是由初创公司先推出,再被巨头收购发扬光大,例如Intel收购RealSense实感摄像头、苹果收购Kinect的技术供应商PrimeSense, Oculus又收购了一家主攻高精确度手势识别技术的以色列技术公司PebblesInterfaces。在国内计算视觉方面的创业团队虽然还没有大规模进入投资者的主流视野,但当中的佼佼者已经开始取得了令人瞩目的成绩。
深度摄像头早在上世纪 80年代就由 IBM提出相关概念,这家持有过去、现在和未来几乎所有硬盘底层数据的超级公司,可谓是时代领跑者。2005年创建于以色列的 PrimeSense公司可谓该技术民用化的先驱。当时,在消费市场推广深度摄像头还处在概念阶段,此前深度摄像头仅使用在工业领域,为机械臂、工业机器人等提供图形视觉服务。由它提供技术方案的微软Kinect成为深度摄像头在消费领域的开山之作,并带动整个业界对该技术的民用开发。
2、声觉传感器
声音传感器的作用相当于一个话筒(麦克风)。它用来接收声波,显示声音的振动图象。但不能对噪声的强度进行测量。声觉传感器主要用于感受和解释在气体(非接触感受)、液体或固体(接触感受)中的声波。声波传感器复杂程度可以从简单的声波存在检测到复杂的声波频率分析,直到对连续自然语言中单独语音和词汇的辨别。
据悉,从20世纪50年代开始,BELL实验室开发了世界上第一个语音识别Audry系统,可以识别10个英文数字。到20世纪70年代声音识别技术得到快速发展,动态时间规整(DTW)算法、矢量量化(VQ)以及隐马尔科夫模型(HMM)理论等相继被提出,实现了基于DTW技术的特定人孤立语音识别系统。近年来,声音识别技术已经从实验室走向实用,国内外很多公司都利用声音识别技术开发出相应产品。比较知名的企业有思必驰、科大讯飞以及腾讯、百度等巨头,共闯语音技术领域。
3、距离传感器
用于智能移动机器人的距离传感器有激光测距仪(兼可测角)、声纳传感器等,近年来发展起来的激光雷达传感器是目前比较主流的一种,可用于机器人导航和回避障碍物,比如SLAMTEC-思岚科技研发的RPLIDARA2激光雷达可进行360度全方面扫描测距,来获取周围环境的轮廓图,采样频率高达每秒4000次,成为目前业内低成本激光雷达最高的测量频率。配合SLAMTEC-思岚科技的SLAMWARE自主定位导航方案可帮助机器人实现自主构建地图、实时路劲规划与自动避开障碍物。
4、触觉传感器
触觉传感器主要是用于机器人中模仿触觉功能的传感器。触觉是人与外界环境直接接触时的重要感觉功能,研制满足要求的触觉传感器是机器人发展中的技术关键之一。随着微电子技术的发展和各种有机材料的出现,已经提出了多种多样的触觉传感器的研制方案,但目前大都属于实验室阶段,达到产品化的不多。
5、接近觉传感器
接近觉传感器介于触觉传感器和视觉传感器之间,可以测量距离和方位,而且可以融合视觉和触觉传感器的信息。接近觉传感器可以辅助视觉系统的功能,来判断对象物体的方位、外形,同时识别其表面形状。因此,为准确抓取部件,对机器人接近觉传感器的精度要求是非常高的。这种传感器主要有以下几点作用:
发现前方障碍物,限制机器人的运动范围,以避免不障碍物収生碰撞。
在接触对象物前得到必要信息,比如与物体的相对距离,相对倾角,以便为后续动作做准备。获取物体表面各点间的距离,从而得到有关对象物表面形状的信息。
6、滑觉传感器
滑觉传感器主要是用于检测机器人与抓握对象间滑移程度的传感器。为了在抓握物体时确定一个适当的握力值,需要实时检测接触表面的相对滑动,然后判断握力,在不损伤物体的情况下逐渐增加力量,滑觉检测功能是实现机器人柔性抓握的必备条件。通过滑觉传感器可实现识别功能,对被抓物体进行表面粗糙度和硬度的判断。滑觉传感器按被测物体滑动方向可分为三类:无方向性、单方向性和全方向性传感器。其中无方向性传感器只能检测是否产生滑动,无法判别方向;单方向性传感器只能检测单一方向的滑移;全方向性传感器可检测个方向的滑动情况。这种传感器一般制成球形以满足需要。
7、力觉传感器
力觉传感器是用来检测机器人自身力与外部环境力之间相互作用力的传感器。力觉传感器经常装于机器人关节处,通过检测弹性体变形来间接测量所受力。装于机器人关节处的力觉传感器常以固定的三坐标形式出现,有利于满足控制系统的要求。目前出现的六维力觉传感器可实现全力信息的测量,因其主要安装于腕关节处被称为腕力觉传感器。腕力觉传感器大部分采用应变电测原理,按其弹性体结构形式可分为两种,筒式和十字形腕力觉传感器。其中筒式具有结构简单、弹性梁利用率高、灵敏度高的特点;而十字形的传感器结构简单、坐标建立容易,但加工精度高。
8、速度和加速度传感器
速度传感器有测量平移和旋转运动速度两种,但大多数情况下,只限于测量旋转速度。利用位移的导数,特别是光电方法让光照射旋转圆盘,检测出旋转频率和脉冲数目,以求出旋转角度,及利用圆盘制成有缝隙,通过二个光电二极管辨别出角速度,即转速,这就是光电脉冲式转速传感器。
加速度传感器是一种能够测量加速度的传感器。通常由质量块、阻尼器、弹性元件、敏感元件和适调电路等部分组成。传感器在加速过程中,通过对质量块所受惯性力的测量,利用牛顿第二定律获得加速度值。根据传感器敏感元件的不同,常见的加速度传感器包括电容式、电感式、应变式、压阻式、压电式等。
机器人要想做到如人类般的灵敏,视觉传感器、声觉传感器、距离传感器、触觉传感器、接近觉传感器、力觉传感器、滑觉传感器、速度和加速度传感器这8种传感器对机器人极为重要,尤其是机器人的5大感官传感器是必不可少的,从拟人功能出发,视觉、力觉、触觉最为重要,目前已进入实用阶段,但它的感官,如听觉、嗅觉、味觉、滑觉等对应的传感器还等待一一攻克。
二、正运动的VPLC系列视觉控制器有什么功能
VPLC系列视觉控制器是正运动技术近年来新推出的高度集成化智能产品,专为替代PC+Windows+Halcon+运动控制卡传统解决方案的组合模式开发。
它是集成运动控制+机器视觉于一体的控制器。该视觉控制器内置了正运动技术自主开发的编程软ZDevelop,在该软件中包含了丰富的运动控制指令和视觉检测处理指令模块。
在实际项目应用中,可使用正运动视觉控制器ZDevelop软件进行视觉定位、检测有无、尺寸测量、视觉飞拍等视觉项目开发,可大大提高产线的自动化程度,缩减企业投入的人力成本和节约视觉+运控解决方案成本,同时它性能稳定、结构紧凑可节省安装空间,由此可见它是一款全功能高性价比的智能控制器产品。
VPLC516E控制器可搭载开放式 Linux系统,支持用户自定义添加 Linux平台下的应用软件,支持使用 Qt开发人机交互用户界面,可调用功能齐全的 Qt动态链接库,拥有简易的运动控制函数库以及 ZVision视觉处理函数库,代码移植性强,开发人员通过正运动技术提供的函数说明手册可快速上手,极大地缩短项目的开发周期。
正运动视觉控制器适用于在机器人定位引导、3C电子零部件生产、激光设备、数控机床、锂电池生产、新能源等应用场景下使用。
三、机器手如何用机器视觉系统来完成控制
根据我在广东粤为工业机器人学院学习的知识所知:视觉系统在机器人在工业生产中得到了越来越广泛的应用,并逐步进入人们的日常生活。机器人朝着智能化、小型化、数字化方向发展。所谓智能化,直观地说就是具有适应外部环境变化的能力。计算机视觉由于信息量大,在智能机器人领域得到了广泛的应用。具体工作有以下几方面:(1)介绍了目前主要的手眼无标定视觉伺服方法——图像雅可比矩阵方法(包括神经网络方法)的基本原理,分析了该方法存在的问题和适用范围。以眼在手上构型视觉定位问题为例,导出了图像雅可比矩阵的近似解析表达式,在此基础上,提出了图像雅可比矩阵与人工神经网络相结合的视觉控制方法,有效地改善了系统性能,扩大了机器人工作范围。(2)针对眼固定情况下平面视觉跟踪问题,提出了基于非线性视觉映射模型的跟踪控制策略,并利用人工神经网络加以实现,取得了良好的效果。进一步,将CMAC应用于视觉跟踪问题,通过自学习算法在线修正神经网络权值,使得控制系统具有适应环境变化的能力。(3)针对眼固定构形,进一步将视觉跟踪策略推广到三维空间中去。提出了基于立体视觉(多摄像机)和基于目标几何模型(单摄像机)的跟踪方法。分析了摄像机位姿相互关系对跟踪精度的影响,提出了图像特征的选取原则。仿真结果表明该方法具有较强的适应性。(4)针对眼在手上机器人手眼无标定平面视觉跟踪问题,指出图像雅可比矩阵方法无法应用(即无法跟踪运动目标)。在此基础上,提出了基于图像特征加速度的视觉映射模型,并设计了相应的控制策略。首次解决了真正意义上的手眼无标定平面视觉跟踪问题,并取得了较好的跟踪效果。进一步将平面视觉跟踪策略推广到三维视觉跟踪问题中去,解决了多摄像机信息融合的难题。(5)研究了眼在手上机器人全自由度视觉跟踪问题。分析了Full-6-DOF跟踪问题的难点,提出了相应的视觉映射模型和跟踪控制方案。创造性地提出了坐标变换方法,克服了旋转与平移运动在图像特征空间中的耦合问题。利用新的模糊神经网络,有效得解决了视觉映射模型的实现问题。仿真结果表明,以上方法是行之有效的。